skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Trillos, Nicolás García"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In the (special) smoothing spline problem one considers a variational problem with a quadratic data fidelity penalty and Laplacian regularization. Higher order regularity can be obtained via replacing the Laplacian regulariser with a poly-Laplacian regulariser. The methodology is readily adapted to graphs and here we consider graph poly-Laplacian regularization in a fully supervised, non-parametric, noise corrupted, regression problem. In particular, given a dataset$$\{x_i\}_{i=1}^n$$ { x i } i = 1 n and a set of noisy labels$$\{y_i\}_{i=1}^n\subset \mathbb {R}$$ { y i } i = 1 n R we let$$u_n{:}\{x_i\}_{i=1}^n\rightarrow \mathbb {R}$$ u n : { x i } i = 1 n R be the minimizer of an energy which consists of a data fidelity term and an appropriately scaled graph poly-Laplacian term. When$$y_i = g(x_i)+\xi _i$$ y i = g ( x i ) + ξ i , for iid noise$$\xi _i$$ ξ i , and using the geometric random graph, we identify (with high probability) the rate of convergence of$$u_n$$ u n togin the large data limit$$n\rightarrow \infty $$ n . Furthermore, our rate is close to the known rate of convergence in the usual smoothing spline model. 
    more » « less